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Dynamically Consistent Shallow-Atmosphere Equations

with a Complete Coriolis Force
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Shallow-atmosphere equations retaining both the vertical and
the horizontal component of the Coriolis force, the latter being
neglected in the traditional approximation, are obtained. The
derivation invokes Hamilton's principle of least action with
an approximate Lagrangian capturing the small increase with
height of the solid-body velocity due to planetary rotation. The
conservation of energy, angular momentum and Ertel's potential
vorticity are ensured in both quasi- and non-hydrostatic systems.
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1. INTRODUCTION

Atmospheric and oceanic motions are usually described
and modelled by the traditional primitive equations.
These equations are based on two approximations of
apparently di�erent nature : the �rst is the shallow-
atmosphere approximation, by which certain metric
terms arising in the spherical-coordinate expression
of the equations of motion are neglected and the
distance r from the origin is replaced by a constant,
the planetary radius; the second is the traditional
approximation (TA) (Dubois, 1885; Eckart, 1960) and
neglects the part of the Coriolis force due to the
horizontal component of the planetary rotation rate
vector, proportional to cos φ at latitude φ. Both
approximations can be justi�ed separately using order-
of-magnitude arguments, depending on the �ow under
consideration. Even if hydrostatic traditional primitive
equations (HPE) are an accurate model to study large-
scale atmospheric and oceanic dynamics of the Earth,
due to the small aspect ratio of the �ow, recent studies
have shown that the components of the Coriolis force
neglected within the TA may have signi�cant e�ects
under speci�c circumstances. Gerkema et al. (2008)
reviewed the general role of the complete Coriolis force
for geophysical and astrophysical applications. Several
recent studies demonstrate the importance of the non-
traditional terms for equatorial circulation both in the
ocean and the atmosphere (Hua et al., 1997; Raymond,
2000; Stewart and Dellar, 2011a,b; Hayashi and Itoh,

2012). Therefore a shallow-atmosphere model with
a complete representation of Coriolis force could be
relevant to study equatorial or other speci�c �ows.
However order-of-magnitude arguments are usually

not considered a su�cient rationale for a set of ap-
proximate equations of motion : it should also be
dynamically consistent in the sense that it possesses
conservation principles for mass, energy, absolute an-
gular momentum (AAM) and potential vorticity. For
shallow-atmosphere hydrostatic equations, conserva-
tion of energy therefore advocates for the neglect of
cosφ terms (Phillips, 1966). Furthermore a shallow-
atmosphere model with a complete Coriolis force lacks
a closed absolute angular momentum (AAM) budget
(Phillips, 1966). Even though AAM is approximately
conserved, i.e. the source terms in the AAM budget
are small (Veronis, 1968; Wangsness, 1970), exact
conservation is still desirable (Phillips, 1968) in order to
be able to analyze the �ow (e.g., Eliassen-Palm �uxes)
and avoid spurious instabilities that may result from
the absence of the dynamical constraints provided by
conservation laws. From this point of view the shallow-
atmosphere and incomplete Coriolis approximations
constitute a dynamically consistent approximation, but
only if taken together, not individually.
The TA has been relaxed recently leading to

consistent, non-traditional shallow-water or primitive
equations with a complete Coriolis force representation
but only in a plane geometry (Dellar and Salmon,
2005; Dellar, 2011). Although Dellar (2011) derived
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the equations from a spherical Hamilton's principle,
he then approximated the metric terms so that the
geometry appears to be Cartesian. Hence, to the best
of our knowledge, no dynamically consistent shallow-
atmosphere model with a complete Coriolis force and
a spherical geometry is known. Indeed dynamically
consistent quasi-hydrostatic equations with a complete
Coriolis force can be obtained, but apparently only if
the shallow-atmosphere approximation is abandoned
and fully spherical geometry is taken into account
(White and Bromley, 1995; White et al., 2005). The
purpose of this work is to derive such a model, thereby
shedding additional light on the nature of the shallow-
atmosphere and traditional approximations. In order to
guarantee a dynamically consistent model, we follow
the approach of Hamilton's principle asymptotics
(Holm et al., 2002) : all approximations are performed
in the Lagrangian then Hamilton's principle of least
action produces the equations of motion following
standard variational calculus (Morrison, 1998).
In section 2, the Lagrangian in fully spherical ge-

ometry is introduced then approximated according to
two small parameters, a shallowness parameter and
a planetary Rossby number. In section 3 Hamilton's
principle of least action is invoked, leading to a dynam-
ically consistent system of shallow-atmosphere, quasi-
hydrostatic or non-hydrostatic equations retaining the
non-traditional cosφ Coriolis terms. A brief discussion
follows in section 4.

2. Approximate Lagrangian for a
rapidly-rotating, shallow atmosphere

2.1. Lagrangian for a compressible, rotating �ow

The three-dimensional equations of adiabatic �uid
motion may be derived using Hamilton's principle
of least action. To de�ne the action and express its
variations we adopt the Lagrangian point of view
: �uid parcels are identi�ed by their Lagrangian
label a = (a1, a2, a3) and their positions are functions
of label a and time τ . A �uid parcel is located
by the standard spherical polar coordinates (λ, φ, r)
respectively, corresponding to unit vectors (eλ, eφ,n),
where n is the (outward) radial direction. rn is the
position of a �uid parcel and ṙ = ∂r(a, τ)/∂τ = rṅ +
ṙn is its three-dimensional velocity. Furthermore, ρ0(r)
being the initial density �eld, it is always possible to
choose r(a, τ = 0) such that ρ0det (∂r/∂a) = 1 initially.
With this choice, the mass of an in�nitesimal volume
surrounding a �uid parcel is dm = d3a = ρd3r. Hence
at t > 0, ρ = det (∂r/∂a)

−1
. Variations δṙ and δρ can

be expressed in terms of variations δr(a, τ) taken at
�xed Lagrangian label (Morrison, 1998).
The Lagrangian for a compressible, rotating �ow is

the integral over Lagrangian labels :

L =

ˆ
d3a (KH + δNHKV − Φ(r)− e(ρ, s)) (1)

KH =
1

2
r2ṅ2 + r2ṅ · (Ω× n) (2)

KV =
1

2
ṙ2 (3)

where KH and KV are the contributions of horizontal
and vertical kinetic energy respectively. We have
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Figure 1. Volume element d3r on the sphere : deep (left panel)
spherical element vs shallow (right panel) spherical element

included a switch δNH to allow the hydrostatic
equations to be considered too. Quasi-hydrostatic
equations of motion are obtained by letting δNH = 0,
neglecting vertical kinetic energy (White and Bromley,
1995; Roulstone and Brice, 1995). Deep-atmosphere
non-hydrostatic equations are obtained if δNH = 1
(White et al., 2005).
The term proportional to the constant planetary

rotation rate Ω gives rise to the Coriolis force. Φ(r)
is the geopotential, assumed spherical here, i.e. we
make the spherical geoid approximation and neglect
oblate-spheroidal corrections. The internal energy e
is a function of density ρ and speci�c entropy s,
and ∂e/∂ρ = pv2, ∂e/∂s = T with p, T and v = 1/ρ
pressure, temperature and speci�c volume.
Hamilton's principle of least action states that �ows

satisfying the equations of motion render the action S
stationary i.e. :

δS = δ

ˆ
dτL = 0 (4)

In the next two subsections a simpli�ed Lagrangian
approximating (1) in the limit of a shallow atmosphere
is introduced, following the approach of Hamilton's
principle asymptotics to derive approximate equations
of motion (Holm et al., 2002).

2.2. Simpli�ed shallow-atmosphere geometry

The thickness H of the atmosphere and the plan-
etary radius a de�ne a non-dimensional shallowness
parameter ε = H/a� 1. In this limit a leading-order
approximation yields

Φ = gz +O(εgH).

where we have introduced the elevation z = r − a =
O(H) and the constant Φ(a) has been subtracted from
Φ.
Also the spherical volume element is d3r =

r2drd2n, cf. Fig. 1, left panel, with d2n = cosφdλdφ.
Correspondingly, the density is obtained as

ρ = det

(
r2
∂ (n, r)

∂a

)−1

The leading-order approximation for ε� 1 is d3r =
a2drd2n (shallow spherical volume element, cf. Fig. 1,
right panel) and
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ρ = a−2det

(
∂ (n, r)

∂a

)−1

(5)

(5) implies a corresponding simpli�cation in the
expression of the variations δρ, yielding δρ = −ρ(∇ ·
δn + ∂zδz) where ∇ is the gradient operator along the
unit sphere. Therefore integrals involving δρ can be
expressed as :

ˆ
d3a p

δρ

ρ2
=

ˆ
d3a

1

ρ
(∇p · δn + ∂zpδz) (6)

by letting δρ/ρ2 dm = − (∇ · δn + ∂zδz) a
2dzd2n, in-

tegrating by parts in z,n and transforming back to an
integral with respect to d3a (Dellar and Salmon, 2005).

2.3. Non-traditional horizontal kinetic energy

So far we have introduced approximations that boil
down to letting r = a in the expressions of d3r
and dΦ/dr, which is the essence of the shallow-
atmosphere approximation. The analogous leading-
order approximation to the horizontal kinetic energy
would be

Ktrad
H

=
1

2
a2ṅ2 + a2ṅ · (Ω× n) (7)

However the smallness of ε is not enough to guarantee
that the terms neglected in (7) are small compared to
the terms retained in (7). Indeed for a characteristic
horizontal velocity U the neglected part of the Coriolis
term is O(εaΩU). If Ω is large enough, this is not
necessarily small compared to the retained kinetic
energy which is O(U2). We therefore introduce a
planetary Rossby number :

µ =
U

Ωa
� 1 (8)

from which U2 = µaΩU . Now (7) is a leading-order
approximation to (2) only if ε� µ. Otherwise it is safer
to retain the next-order Coriolis term, yielding :

Knon-trad
H

=
1

2
a2ṅ2 + (a2 + 2az)ṅ · (Ω× n) (9)

where the neglected terms are now of order εU2 =
µεaΩU and ε2aΩU . Assuming ε2 � µ� 1, both
neglected terms are now � U2 and � εaΩU , i.e.
smaller than the smallest retained terms.
Notice that assuming µ� 1 means only that the

typical �ow velocity relative to the planet is small
compared to the solid-body velocity Ωr due to
the planet's rotation, which is generally true for
atmospheric and oceanic motions. It does not impose a
small Rossby number U/(ΩL) for �ows with a typical
scale L� a. It turns out that letting the Coriolis
contribution depend on z (underlined term in (9))
results in a complete Coriolis force (White et al., 2005),
while neglecting this dependance yields the traditional
Coriolis force. In the next section, all non-traditional
contributions are underlined as it is done in expression
(9).

3. Non-traditional shallow-atmosphere
equations

3.1. Derivation of the equations from Hamilton's
principle of least action

Collecting the above approximations to ρ, Φ and KH
we obtain the approximate Lagrangian :

Lnon-trad =

ˆ
d3a

(
Knon-trad
H

(n, z, ṅ) (10)

+ δNHKV(ż)− gz − e(ρ, s))

where ρ is de�ned by the shallow-atmosphere
approximation (5) and ż = ṙ. Notice that a rigorous
asymptotic derivation of Lnon-trad would require
estimates of the relative orders of magnitude of all
terms retained in, and neglected from (10) (Tort
et al., 2013). This can only be done with more
information about the �ow under consideration, and
is not attempted here for the sake of generality.
We can now invoke Hamilton's principle of least

action (4) considering the non-traditional Lagrangian
Lnon-trad. By requiring the stationarity of the action S,
we get :

ˆ
dτd3a

[
(a2ṅ + a(a+ 2z)Ω× n) · δṅ

−a(a+ 2z)Ω× ṅ · δn +
(

2aṅ · (Ω× n)− g
)
δz

+δNH żδż −
p

ρ2
δρ− Tδs

]
= 0

(11)
where δs = 0 due to Lagrangian conservation of speci�c
entropy s. Integrating by parts in time and using (6)
yields :

−
ˆ

dτd3a
(
a2n̈ + a(a+ 2z)Ω× ṅ

+2ażΩ× n + a(a+ 2z)Ω× ṅ +
1

ρ
∇p

)
· δn

+

(
δNHz̈ − 2aṅ · (Ω× n) + g +

1

ρ
∂zp

)
δz = 0

(12)
Finally factors in front of δn and δz must vanish,
yielding the equations of motion. Projecting (12) onto
the local basis (eλ, eφ,n) we get :

a2
(
Dt(cosφλ̇)− sinφλ̇φ̇

)
− 2aΩ (a+ 2z) sinφφ̇

+2aΩż cosφ+
1

ρ cosφ
∂λp = 0,

a2
(
Dtφ̇+ sinφ cosφλ̇2

)
+ 2aΩ (a+ 2z) sinφ cosφλ̇

+
1

ρ
∂φp = 0,

δNHDtż − 2aΩ cos2 φλ̇+ g +
1

ρ
∂zp = 0,

(13)
where the Lagrangian derivative is de�ned asDt = ∂t +
λ̇∂λ + φ̇∂φ + ż∂z. The above system (13) constitutes
non-traditional shallow-atmosphere equations on the

rotating sphere in terms of angular velocities
(
λ̇, φ̇

)
.

The underlined terms result from the z-dependent
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Coriolis contribution present in (9) and absent from
(7). They produce non-traditional components of the
Coriolis force proportional to cosφ (which alter the
horizontal and vertical momentum balances), and
an O(ε) correction to the traditional Coriolis force
proportional to sinφ (which alters the horizontal
momentum balance only). Non-traditional quasi-
hydrostatic equations are obtained with δNH = 0.
We can rewrite the system (13) by introducing

components of physical velocity u = (u, v, w): u =

a cosφλ̇, v = aφ̇, w = ż,

Dtu−
(

2Ω

(
1 +

2z

a

)
+

u

a cosφ

)
v sinφ

+2Ωw cosφ+
1

ρa cosφ
∂λp = 0,

Dtv +

(
2Ω

(
1 +

2z

a

)
+

u

a cosφ

)
u sinφ

+
1

ρa
∂φp = 0,

δNHDtw − 2Ωu cosφ+ g +
1

ρ
∂zp = 0,

(14)

where Dt = ∂t +
u

a cosφ
∂λ +

v

a
∂φ + w∂z. If under-

lined terms are omitted, either traditional shallow-
atmosphere compressible Euler equations (δNH = 1) or
the HPE (δNH = 0) are recovered.
Finally (14) may be cast in vector form :

Dtu + 2Ωnon−trad × u +
1

ρ
gradp

−δNHnDtw + gn = 0,
(15)

where Dtu and grad take their shallow-atmosphere
expression and the Coriolis vector is de�ned as :

Ωnon−trad =

(
1 +

2z

a

)
Ω sinφn + Ω cosφeφ. (16)

3.2. Conservation laws

The conservation of total energy, which takes the same
form as with deep and shallow systems,

E = ρ

(
u2 + v2 + δNHw

2

2
+ gz + e(ρ, s)

)
(17)

results from the invariance of the action with respect
to translations in time.It is also easily derived along
the lines of White and Bromley (1995) from the
vector-form (15).

In order to obtain the expression of potential
vorticity and angular momentum, we determine the
canonical momenta corresponding to Lnon-trad by
considering variations of u:

δLnon-trad =

ˆ
d3a (m · δu) (18)

m =

(
u+

(
1 + 2

z

a

)
Ωa cosφ

)
eλ

+veφ + δNHwn. (19)

Then it can be shown, either from the invariance
of the action with respect to rotations around the
polar axis via the standard Noether theorem, or by a
direct computation, that the axial momentum with the
density

lz = ρm · a cosφeλ (20)

is locally conserved, leading with appropriate boundary
conditions to the conservation of Lz =

´
lza

2dzd2n.
Futhermore, Ertel's potential vorticity is expressed as

q =
(curl m) · grad(s)

ρ
, (21)

where curl and grad take their standard shallow-
atmosphere form, i.e. the spherical-coordinate form
with ∂/∂r = ∂/∂z and r = a. That Dq/Dt = 0 can
be established directly using a general result derived
from the particle relabeling symmetry (Salmon,
1988; Morrison, 1998). A direct derivation is also
straightforward. First one can check that an equivalent
curl-form of (14) is:

∂tm + (curl m)× u + grad B =
1

ρ
gradp, (22)

where B =
u2

2
+ Φ is the Bernouilli function. Taking

the curl of (22), combining with the continuity equation
and entropy budget one can obtain Dq/Dt = 0 (Vallis,
2006).

4. DISCUSSION

In this note, we have identi�ed a dynamically consistent
shallow-atmosphere model which incorporates a
complete Coriolis force representation providing a
spherical counterpart to similar equations valid in
planar geometry (Dellar (2011); see also Staniforth
(2012)). The non-hydrostatic and quasi-hydrostatic
variants of the presently derived model can now
be considered as a �fth and sixth possibility
within the family of approximations identi�ed in
White et al. (2005). The equations have been
derived using Hamilton's principle of least action in
Lagrangian coordinates leading to a set of equations
in their advective form. The system is dynamically
consistent in the sense that properly de�ned energy,
angular momentum and Ertel's potential vorticity are
conserved without special e�ort as a consequence of the
variational approach.
The three-dimensional approximate Lagrangian

Lnon-trad (10) is intermediate between the exact
and approximate Lagrangians considered by Dellar
(2011) (Eqs. 4.8 and 5.2). Here no approximation
is made with respect to the horizontal geometry, in
order to retain a spherical domain. Lnon-trad has
been approximated within the shallow-atmosphere
approximation. Precisely, the underlying assumptions
are a small planetary Rossby number µ and a small
non-dimensional thickness of the atmosphere ε such as
ε2 � µ� 1.
Compared to the traditional equations, non-

traditional terms arise in the horizontal and vertical
momentum balance. These terms can also be inferred
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heuristically or by an asymptotic analysis of the
deep-atmosphere equations of motion but it is well-
known that the resulting set of equations lack a
closed angular momentum budget (Phillips, 1966;
Veronis, 1968; Phillips, 1968). The key to restore a
closed angular momentum budget is to also expand
the standard Coriolis force at O(ε). With this tiny
correction, a dynamically consistent model is obtained.
This correction restores the non-divergence of the
Coriolis vector (16) arising in the vector form (15).
In hindsight, this constraint, which follows from the
de�nition of 2Ω as the curl of planetary velocity, could
have been used to infer heuristically expression (16) as
discussed in a Cartesian context by Dellar (2011).
From typical values of parameters for the synoptic

motions in the Earth's atmosphere and ocean we
arrive at the following estimates : ε ∼ 1.5× 10−3, µ ∼
2.1× 10−2 in the atmosphere and ε ∼ 5× 10−4, µ ∼
2.1× 10−4 in the ocean. Thus, our approximations are
relevant for studying the dynamics of both Earth's
atmosphere and ocean. For the ocean the traditional
HPE with omission of the O(ε) terms, while retaining
O(µ) terms is less justi�ed than for the atmosphere.
Therefore, the present model could be relevant to
address non-traditional e�ects arising from the cosφ
Coriolis part especially concerning ocean dynamics.
Indeed a few studies (Hua et al., 1997; Raymond, 2000;
Stewart and Dellar, 2011a,b; Hayashi and Itoh, 2012)
point to signi�cant dynamical e�ect of the complete
Coriolis force for some particular equatorial �ows.
The model derived here is intermediate between

the traditional shallow-atmosphere approximation
and deep-atmosphere equations, discarding the fully
spherical geometry of the latter. This simpli�cation
may ease the numerical implementation of the model
(compared to a deep-atmosphere model), especially if
a general vertical coordinate with a time-dependant
elevation of model levels is used. Furthermore the
model derived here could be useful to disentangle the
e�ects due to the cosφ Coriolis terms from those due to
deep spherical geometry, e.g. on the general circulation
of the deep planetary atmospheres.
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