Secondary Stability of Ekman Layer Roll Vortices

T. Dubos, C. Barthlott, P. Drobinski

Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, Palaiseau
Roll Vortices in the Atmospheric Boundary Layer

Indirect (cloud streets) and direct (radar, lidar, SAR) observations

Cloud street (Brown, 1970)

SAR Image [Morrison et al., 2005]
- rolls induce momentum and heat fluxes
- can dominate fluxes induced by small-scale turbulence

Momentum Flux vs Shear in a Hurricane Boundary Layer

[Morrison et al., 2005]
The Inflection-Point Instability Scenario

Rolls are believed to emerge from inflection-point instability, reinforced by convective instability under convective conditions [Etling & Brown, 1993]

- Ekman spiral profile is linearly unstable [Lilly, 1966]
- 2D+1 equilibrium solutions obtained by weakly non-linear expansions [Foster, 1997 & 2005]
Near-Neutral / Shear-Driven PBL

- relevant for a range of situations, e.g. hurricane boundary layer
- has most important dynamical ingredients: shear, veering, lower boundary
- more tractable

- rolls obtained in 2D+1 neutral DNS at Re=150 but not Re=400 [Faller & Kaylor, 1966]
- rolls not observed in 3D neutral DNS at Re=400 [Coleman et al., 1990]
- LES require some buoyancy forcing to form rolls [Mason & Thompson, 1987; Moeng and Sullivan, 1994]
Near-Neutral / Shear-Driven PBL

- relevant for a range of situations, e.g. hurricane boundary layer
- has most important dynamical ingredients: shear, veering, lower boundary
- more tractable

- rolls obtained in 2D+1 neutral DNS at Re=150 but not Re=400 [Faller & Kaylor, 1966]
- rolls not observed in 3D neutral DNS at Re=400 [Coleman et al., 1990]
- LES require some buoyancy forcing to form rolls [Mason & Thompson, 1987; Moeng and Sullivan, 1994]
Questions Addressed

- Does the flow reach another equilibrium, and how fast?
- Is that new equilibrium itself stable with respect to three-dimensional perturbations?
- Dependence on latitude? [Leibovich and Lele, 1985]
- Stable stratification?
Outline

1. Primary Instability
 - Model, Geometry, Scales, Parameters
 - Time Evolution toward Equilibrium
 - Rolls in Exact Equilibrium

2. Secondary Instability
 - Temporal and Spatial Scales
 - Structure and Energetics
 - Implications

3. Effects of Latitude and Stratification
 - Dependence on Latitude
 - Stable Stratification (work in progress)
Outline

1. Primary Instability
 - Model, Geometry, Scales, Parameters
 - Time Evolution toward Equilibrium
 - Rolls in Exact Equilibrium

2. Secondary Instability
 - Temporal and Spatial Scales
 - Structure and Energetics
 - Implications

3. Effects of Latitude and Stratification
 - Dependence on Latitude
 - Stable Stratification (work in progress)
Model

Incompressible, rotating Navier-Stokes with constant turbulent viscosity

- Latitude $\lambda \Rightarrow$ Coriolis parameter, $f = 2\Omega_0 \sin \lambda \sim 10^{-4} \text{s}^{-1}$
- Ekman depth $\delta = \sqrt{2K/f} \sim 400 \text{ m}$
- Turbulent viscosity $K = f\delta^2/2 \sim 10 \text{ m}^2 \cdot \text{s}^{-1}$
- Geostrophic wind $U \sim 1 - 10 \text{ m} \cdot \text{s}^{-1}$
- Advective time scale $\tau_{ad} = \delta/U \sim 1 - 10 \text{ min}$
- Turbulent Reynolds number $Re = U\delta/K \simeq 200 - 500$
- Rossby number $Ro = U/f\delta = Re/2$

\[
\frac{\partial \mathbf{u}}{\partial t} = - \left(\omega + \frac{1}{Ro} (\mathbf{e}_z + \cotg \lambda \mathbf{e}_N) \right) \times \mathbf{u} - \nabla \left(P + \frac{\mathbf{u} \cdot \mathbf{u}}{2} \right) + \frac{1}{Re} \nabla^2 \mathbf{u}
\]
Linear instability

\[u(x, z, t) = u_0(z) + u'_{2D}(x, z, t) \quad u'_{2D} \ll 1 \quad u'_{2D} = \tilde{u}(z)e^{\sigma t}e^{ik_1(x-\alpha t)} + c.c \]
Linear Instability (Lilly, 1966)

Ekman Spiral

growth rate vs wave vector k_1 at $Re = 500$
Linear Instability (Lilly, 1966)

Growth rate vs Reynolds number Re

Selected wave number vs Re

Selected wave number vs Re

T. Dubos, C. Barthlott, P. Drobinski
Time Evolution toward New Equilibrium?

\[u(x, z, t) = u_0(z) + u'_{2D}(x, z, t) \quad \langle u'_{2D} \rangle_x \neq 0 \]

- 2D rolls obtained at Re=150 but not Re=400 [Faller & Kaylor, 1966]
- 3D rolls not observed at Re=400 [Coleman et al., 1990]

- Linear phase: constant phase velocity
- Followed by a strongly instationary evolution
- Then slow relaxation to equilibrated flow

Phase velocity vs time
Time Evolution toward New Equilibrium?

\[u(x, z, t) = u_0(z) + u_2D(x, z, t) \quad \langle u_2D \rangle_x \neq 0 \]

- 2D rolls obtained at Re=150 but not Re=400 [Faller & Kaylor, 1966]
- 3D rolls not observed at Re=400 [Coleman et al., 1990]

- Linear phase: constant phase velocity
- Followed by a strongly instationary evolution
- Then slow relaxation to equilibrated flow
Primary Instability
Secondary Instability
Effects of Latitude and Stratification
Summary

Rolls in Exact Equilibrium

\[\mathbf{u}_1(x - ct, z) = \mathbf{u}_0(z) + \mathbf{u}'_{2D}(x - ct, z) \]

- axial velocity and vertical wind
- axial vorticity

T. Dubos, C. Barthlott, P. Drobinski

Secondary Stability of Ekman Layer Roll Vortices
Interim Summary

- fully non-linear, co-rotating, equilibrated rolls exist even at “high” Reynolds numbers
- are approached, but not always attained through temporal evolution of a small initial disturbance
- for practical purposes, the equilibrated rolls represent the flow adequately
- assumption of y--invariance is a strong restriction!
Interim Summary

- fully non-linear, co-rotating, equilibrated rolls exist even at “high” Reynolds numbers
- are approached, but not always attained through temporal evolution of a small initial disturbance
- for practical purposes, the equilibrated rolls represent the flow adequately
- assumption of y–invariance is a strong restriction!
Interim Summary

- fully non-linear, co-rotating, equilibrated rolls exist even at “high” Reynolds numbers
- are approached, but not always attained through temporal evolution of a small initial disturbance
- for practical purposes, the equilibrated rolls represent the flow adequately
- assumption of y–invariance is a strong restriction!
Interim Summary

- fully non-linear, co-rotating, **equilibrated rolls exist even at “high” Reynolds numbers**
- are **approached, but not always attained** through temporal evolution of a small initial disturbance
- for practical purposes, the equilibrated rolls represent the flow adequately
- **assumption of y–invariance is a strong restriction!**
Primary Instability
- Model, Geometry, Scales, Parameters
- Time Evolution toward Equilibrium
- Rolls in Exact Equilibrium

Secondary Instability
- Temporal and Spatial Scales
- Structure and Energetics
- Implications

Effects of Latitude and Stratification
- Dependence on Latitude
- Stable Stratification (work in progress)
Position of the Problem

\[u(x + ct, y, z, t) = u_1(x, z) + u'_3D(x, y, z, t) \]

\[u'_3D \ll 1 \quad u'_3D = e^{\sigma t} e^{i\gamma(y-c_2 t)} \tilde{u}(x, z) + c.c \]
Temporal and Spatial Scales

Growth rate vs axial wave number

Growth rate vs Reynolds Number

T. Dubos, C. Barthlott, P. Drobinski

Secondary Stability of Ekman Layer Roll Vortices
Structure : Localization of Energy

\[e(x, z, t) = \frac{1}{2} \left\langle u'^2 + v'^2 + w'^2 \right\rangle_y \]
Isosurface of total axial vorticity
\[\partial_t \langle e(x, z, t) \rangle_{x,z} + D = \langle s_{AX} \rangle_{x,z} + \langle s_{CR} \rangle_{x,z} \]

\[s_{AX} = -\langle v' u' \rangle_y \partial_x v_1 - \langle v' w' \rangle_y \partial_z v_1 \]
Kinetic Energy Budget

\[\partial_t \langle e(x, z, t) \rangle_{x,z} + D = \langle s_{AX} \rangle_{x,z} + \langle s_{CR} \rangle_{x,z} \]

Energy production by cross–roll shear

\[s_{CR} = - \langle u'w' \rangle_y (\partial_x w_1 + \partial_z u_1) - \langle u'u' \rangle_y \partial_x u_1 - \langle w'w' \rangle_y \partial_z w_1 \]
Implications

- Equilibrated rolls become unstable for $Re \geq 326$
- Growth rate of secondary instability is comparable to growth rate of primary instability; selected horizontal scale is about four times smaller
- Mechanism? (energetics can be misleading)
- Unstable mode localized in the updraft \Rightarrow along-roll modulation of updrafts
- Nonlinear evolution of the unstable perturbation?

Cloud street (Brown, 1970)
Outline

1. Primary Instability
 - Model, Geometry, Scales, Parameters
 - Time Evolution toward Equilibrium
 - Rolls in Exact Equilibrium

2. Secondary Instability
 - Temporal and Spatial Scales
 - Structure and Energetics
 - Implications

3. Effects of Latitude and Stratification
 - Dependence on Latitude
 - Stable Stratification (work in progress)
Why Latitude Matters

\[
\frac{\partial \mathbf{u}}{\partial t} = - \left(\omega + \frac{1}{Ro} \left(\mathbf{e}_z + \cotg \lambda \mathbf{e}_N \right) \right) \times \mathbf{u} - \nabla \left(P + \frac{\mathbf{u} \cdot \mathbf{u}}{2} \right) + \frac{1}{Re} \nabla^2 \mathbf{u}
\]
Primary Instability

Summary

Dependence on Latitude
Stable Stratification (work in progress)

Primary Instability [Leibovich & Lele, 1985]

Growth rate vs Reynolds Number

Selected wave vector vs Re

T. Dubos, C. Barthlott, P. Drobinski

Secondary Stability of Ekman Layer Roll Vortices
Dependence of Secondary Instability on Latitude

Growth rate σ vs Reynolds Number

σ vs Re

Selected axial wave vector k_2 vs Re

σ_2 vs Re

k_2 vs Re

T. Dubos, C. Barthlott, P. Drobinski

Secondary Stability of Ekman Layer Roll Vortices
Richardson Number

- Buoyancy $g(\theta - \theta_0)/\theta_0 = N^2 \hat{z} + \hat{b}$
- Richardson Number $Ri = (N\delta/U)^2$
- Turbulent diffusivity
- Turbulent Prandtl number $Pr = K/K_b$
- Adimensionalize $b = \hat{b}/NU$
- Boussinesq equations

\[
\frac{\partial \mathbf{u}}{\partial t} + \left(\omega + \frac{1}{Ro} \mathbf{e}_z \right) \times \mathbf{u} + \nabla \left(P + \frac{\mathbf{u} \cdot \mathbf{u}}{2} \right) = Ri^{1/2} b \mathbf{e}_z + \frac{1}{Re} \nabla^2 \mathbf{u}
\]

\[
\frac{\partial b}{\partial t} + \nabla b \cdot \mathbf{u} = -Ri^{1/2} w + \frac{1}{Pr \, Re} \nabla^2 b
\]

Mechanical energy $\frac{u^2 + v^2 + w^2 + b^2}{2}$
Effect on Equilibrated Rolls

Roll energy vs Richardson number

- Potential energy
- Kinetic energy
- Total

N^2_{min} vs Ri

T. Dubos, C. Barthlott, P. Drobinski

Secondary Stability of Ekman Layer Roll Vortices
Effect on secondary instability: overturning?

Reminiscent of PhD work by J. Barnard on the strongly stratified Ekman layer.
Summary

- Fully non-linear, co-rotating, equilibrated rolls are approached, but not always attained through temporal evolution of a small initial disturbance.
- Growth rate of secondary instability is comparable to growth rate of primary instability; scale is about four times smaller.
- And quite sensitive to the horizontal Coriolis component.

- Nonlinear evolution of the unstable secondary perturbation?
- Effect of stratification? Might in fact enhance the secondary instability?
- Strong stratification? Turbulent bursts initiated by transient growth of perturbations?
Summary

- **fully non-linear, co-rotating, equilibrated rolls are approached, but not always attained** through temporal evolution of a small initial disturbance.

- **growth rate** of secondary instability is **comparable** to growth rate of primary instability; **scale** is about **four times smaller**.

- And quite **sensitive** to the horizontal Coriolis component.

Nonlinear evolution of the unstable secondary perturbation?

Effect of stratification? might in fact enhance the secondary instability?

Strong stratification? Turbulent bursts initiated by transient growth of perturbations?
Summary

- fully non-linear, co-rotating, equilibrated rolls are approached, but not always attained through temporal evolution of a small initial disturbance.

- growth rate of secondary instability is comparable to growth rate of primary instability; scale is about four times smaller.

- and quite sensitive to the horizontal Coriolis component.

Nonlinear evolution of the unstable secondary perturbation?

Effect of stratification? might in fact enhance the secondary instability?

Strong stratification? Turbulent bursts initiated by transient growth of perturbations?
Summary

- fully non-linear, co-rotating, equilibrated rolls are approached, but not always attained through temporal evolution of a small initial disturbance.

- Growth rate of secondary instability is comparable to growth rate of primary instability; scale is about four times smaller.

- And quite sensitive to the horizontal Coriolis component.

Nonlinear evolution of the unstable secondary perturbation?

- Effect of stratification? might in fact enhance the secondary instability?

- Strong stratification? Turbulent bursts initiated by transient growth of perturbations?
fully non-linear, co-rotating, equilibrated rolls are approached, but not always attained through temporal evolution of a small initial disturbance

growth rate of secondary instability is comparable to growth rate of primary instability; scale is about four times smaller

and quite sensitive to the horizontal Coriolis component

Nonlinear evolution of the unstable secondary perturbation?

Effect of stratification? might in fact enhance the secondary instability?

Strong stratification? Turbulent bursts initiated by transient growth of perturbations?
Summary

- fully non-linear, co-rotating, equilibrated rolls are approached, but not always attained through temporal evolution of a small initial disturbance.

- growth rate of secondary instability is comparable to growth rate of primary instability; scale is about four times smaller.

- and quite sensitive to the horizontal Coriolis component.

- Nonlinear evolution of the unstable secondary perturbation?

- Effect of stratification? might in fact enhance the secondary instability?

- Strong stratification? Turbulent bursts initiated by transient growth of perturbations?